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A PARAMETRIC STUDY OF SPUR GEAR DYNAMICS 

Hsiang Hsi Lin and Chuen-Huei Liou 
Department of Mechanical Engineering 

The University of Memphis 
Memphis, Tennessee 

ABSTRACT 

A parametric study of a spur gear system was performed through a numerical analysis 

approach. This study used the gear dynamic program DANST, a computer simulator, to determine 

the dynamic behavior of a spur gear system. The analytical results have taken the deflection of 

shafts and bearings into consideration for static analysis, and the influence of these deflections on 

gear dynamics was investigated. 

Damping in the gear system usually is an unknown quantity, but it has an important effect 

in resonance vibration. Typical values as reported in the literature were used in the present 

analysis. The dynamic response due to different damping factors was evaluated and compared. 

The effect of the contact ratio on spur gear dynamic load and dynamic stress was 

investigated through a parameter study. The contact ratio was varied over the range of 1.26 to 2.46 

by adjusting the tooth addendum. Gears with contact ratio near 2.0 were found to have the most 

favorable dynamic performance. 



CHAPTER I 

INTRODUCTION 

Power transfer is necessary from source to application in mechanical power systems. 

Compared with other transmission members, gears have several advantages considering their 

small overall dimensions, constant transmission ratio and operating simplicity. Therefore, they 

have the widest application in mechanical engineering for transmission of power. The art and 

science of gear transmission systems continue to improve. Today's engineers and researchers 

delve into many areas of innovative advancement and seek to establish and modify methods 

which can make gear systems meet the ever-widening needs of advancing technology. Their 

objectives are improvements of transmission life, operating efficiency, and reliability. They also 

seek to increase the power-to-weight ratio and to reduce noise and vibration of gear 

transmissions. 

Research on gear noise and vibration has revealed that the basic mechanism of noise 

generated from gearing is vibration excited by the dynamic load. Dynamic load carrying 

behavior of gears is strongly influenced by geometric deviations associated with manufacturing, 

assembly and deformation processes. High dynamic load can lead to fatigue failure and affect the 

life and reliability of a gear transmission. Minimizing gear dynamic load will decrease gear 

noise, increase efficiency, improve pitting fatigue life, and help prevent gear tooth fracture. At 

present, concerted gear transmission system studies have been concentrated on two main effects. 

These studies have been on: (1) The localized tooth stress effects during gear interactions, and 

(2) the overall global dynamic behavior of the systems. 

The problem of dynamic loads acting on gear teeth was first studied in the early 1930's by the 

ASME Research Committee and tests were conducted by Lewis and Buckingham [1]. Their 

report indicated a procedure to determine the dynamic load increment due to dynamics of gears 



in mesh and the error of the gear teeth. Tuplin [2] was one of the first to publish a more refined 

method of determining the dynamic load in gear teeth. He considered gear meshing as an 

equivalent spring-mass model with constant stiffness subjected to wedge or sinusoidal 

excitations. Cloutier [3], Gregory [4], etc. later modified this model by introducing spring as a 

time varying stiffness. In 1977, Cornell and Westervelt [5] developed a time history, closed 

form solution of a dynamic model of spur gear system which consisted of a cantilever beam with 

a cam moving along it for simulating the engagement and disengagement of the adjacent tooth to 

generate the dynamic load for meshing teeth. This dynamic model was based on Richardson's 

cam model [6], but treated the teeth as a variable spring. They stated that the nonlinearity of the 

tooth pair stiffness during mesh, the tooth error, and the profile modifications had significant 

effects upon the dynamic load. The studies on geared rotor dynamics have been rather recent. 

Several modeling and solution techniques such as lumped mass models and the use of the 

transfer matrix method and finite element method have been applied to rotor dynamics problems. 

Hamad and Seireg [7] studied the whirling of geared rotor systems without considering torsional 

vibrations and the gear shaft was assumed to be rigid. Iida, et al. [8] considered the same 

problem by taking one of the shafts to be rigid and neglecting the compliance of the gear mesh. 

He obtained a three degree of freedom model to determine the response of the first three 

vibration modes. In 1984, Iwatsubo, Arii and Kawai [9] used the transfer matrix method to 

evaluate the forced response due only to the mass unbalance in the rotor system. Later, they [10] 

included the effects of periodic variation of mesh stiffness and profile errors of both gears. Since 

computer usage has become popular in the 80's and 90's. Tedious computation now can be easily 

done through computer modeling by writing appropriate code. Finite element methods are 

widely used in engineering analysis. Ozguren and Houser [11,12] used a spatial finite line- 

element technique to perform mode shape and frequency analysis in geared rotor systems. Also, 



their study included the effect of bearing flexibility which is usually neglected in simple gear 

dynamics models. 

All of the above literature analyzed the dynamics of a gear transmission system in different 

aspects. Their models treated either the shaft and bearing of gear system or the gear teeth as rigid 

bodies depending on the purpose of analysis. In reality, none of the above components are rigid 

when subjected to a force. To evaluate the gear dynamic behavior more accurately, the 

deflections of shafts and bearings, and the deformations of gears, due to transmitted load should 

be taken into account in modeling the gear transmission system. The computer code DANST 

which was developed for the dynamic analysis of low-contact-ratio gears [13] and high-contact- 

ratio gears [14] was modified to conduct this study. The dynamic response of a spur gear pair is 

depicted by the dynamic load and stress factors. Two different gear-shaft assembly types were 

considered in the study. Several gear parameters such as damping and contact ratio are 

examined in a wide range of variation to determine their influence on gear dynamics. The 

computer simulation results revealed the effect of each individual parameter and can help the 

gear designer choose the optimum value of gear parameters when designing a gear train system 

for minimum dynamic load and stress. 



CHAPTER II 

SYSTEM CHARACTERISTICS 

11.1 System Configuration 

Gears are used to transmit power and/or angular motion between shafts. There exists a wide 

variety of types of gears with each serving a range of functions. For our investigation a simple 

spur gear system was used and its model is illustrated in Figure II. 1, in which several basic 

elements such as flexible shaft, rolling element bearing, motor, and load are shown. The static 

properties of the components of the system were obtained from the literature of gearing, mechanics 

of materials, lubrication, rolling bearing, vibration, and finite element methods. They will be 

introduced later into dynamic investigations. 

A set of governing equations of motion can be determined from the system properties, such as 

stiffnesses, inertias, damping factors, frictions,... etc. The equations are then integrated and solved 

by a numerical method through the aid of a computer. Those solutions are based on the following 

assumptions: (1) the dynamic process is defined in rotating plane of the gears, (2) the torsional 

stiffness of the shafts and gears in engagement, and their masses are also acting in the same plane, 

and (3) the axes of rotation are symmetrical, and out-of-plane twisting and misalignment effects are 

not considered. A parametric study was performed to examine the system dynamic behavior and to 

evaluate and determine the best parameter values based upon the result of the simulation. 

11.2 Basic Geometry of Spur Gear 

II.2.1 Involute Curve 
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Figure II. 1  A simple spur gear system 
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Figure EE.2 Geometry of an involute curve 



For a spur gear the teeth lie parallel to the axis of rotation and are of involute form in most 

case. The analytical geometry of an involute curve, shown in Figure II.2, defined as the locus of 

any fixed point on a tangent line as this line rolls, without slipping around a circle. This process 

may be visualized as unwinding a string from a circular disk. The circle from which the string is 

unwound is called the base circle. The length of the generating line "L" as it lies between the 

involute curve at point c and point b, at which it is tangent to the base circle, is the same as its 

length as it was when wrapped around the base circle from point b to point a. Therefore, the 

geometrical relationship of the involute curve can be expressed as follows: 

6 = ß - <j> = ß - tan': f Rl 
Rb 

(ELI) 

i r2-R^ =Rbß (IL2) 

Vr^^Ri 
Rb 

(II-3) 

where 

Rb : radius of base circle 

r : radius to any point of involute 

ß : angle through which line has been unwound 

hence 

Rb 1,     Rb     j 
(II.4) 



This is the polar equation of the involute curve. The tangent to the involute at any point is 

perpendicular to the generating line and the shape of the involute is dependent only on the diameter 

of the base circle. 

11.2.2 Contacting Involute Curve 

Consider the action of two involute gear teeth transmitting angular motion by means of shafts 

as shown in Figure H.3. The line (AB) is called the Line of Action and it is a line tangent to the 

two base circles at point A and point B. If point C moves along involute is revolved at a uniform 

rate of motion, it changes the length of generating line (AE) uniformly. Meanwhile, the length of 

the generating line (BE) on the mating involute changes at the same uniform rate, because the total 

length of the common tangent (AB) of the two base circles remains constant. Thus, all contact 

between two involutes takes place along the line of action. The relative rate of motion depends only 

upon the relative sizes of two base circles while the relative rates of rotation are independent of the 

distance between the center of the two base circles. 

11.2.3 Rolling and Sliding Velocity 

Pure rolling occurs if two friction disks rotate in contact without slipping. However, for the 

case of two involute gear teeth meshing with each other, the meshing action is a combination of 

rolling and sliding. Figure II.4 shows two gears with equal size base circles which mesh with each 

other. The teeth are in contact at the pitch point P. Radii of curvature of the two involutes are 

shown at equal angular intervals on each base circle. The arc XY which describes the tooth profile 

on gear I and the arc AB which describes the tooth profile on gear II have different lengths. 

Therefore, the two profiles must slide over each other during mesh to make up the 

8 
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Figure H3 Meshing diagram of an involute gear pair 



Figure II.4  Profile length difference between two 

mating involute curves 
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difference in the arc lengths. Under this condition, the sliding velocity at any point is calculated 

as: 

=   Rci  coi - Rc2  02 (n.5) 
Vs 12 

By referring to Figure H3, the following expressions are obtained: 

12 V 
coi 

RPI 

Re 

where 

Rpi, Rp2: radius of pitch circle of gear, in 

Rbi, Rb2 : radius of base circle of gear, in 

ri, r2 :any radius of gear-tooth profile, in 

Rd, Rc2 : radius of curvature of gear at ri, r2, in 

11 

(116) 

-   RPI   
mi (II.7) 

02  ~  -~  v      ' 
RP2 

V =   2 7C Rp! n   _   RPI  oi (118) 
12 12 

Rci   + Rc2   = C sin <|) (M-9) 

l = U^W, <IL1°) 

Rc2   = V r! -R2,  = C sin <), - V R? - RM OI-11) 



W\, W2 : angular velocity of gear, rad/min 

C : center distance, in 

n : speed of driving gear, rpm 

V : pitch-line velocity of gears, ft/min 

Vs: sliding velocity, ft/min 

(j)   : pressure angle, degree 

Using the above parameters, the sliding velocity equation can be rewritten as: 

V ( RPI  + RP2 ) 
Vs    = 

RPI RPI 
(V ri  - R2

bl - RPI sin <|> (11.12) 

n.3 Elastic Deflection and Stiffness of Spur Gear Teeth 

A pair of teeth in contact due to the load will deflect elastically. According to R.W. Cornell's 

nonlinear compliance model [5] this deflection is based on a combination of the deflection of the 

tooth as a cantilever beam, local contact compression, and fillet and tooth foundation flexibility 

effects. All of the above except the local contact compression are linear functions of the load. 

The nonlinear term is due to the Hertzian deflection. The total deflection of a gear tooth can be 

expressed along a line normal to the tooth profile. Since the gear tooth is stubby, both the 

foundation and the shear effects are essential. To calculate tooth deflection, first, it is assumed 

that the involute portion of a gear tooth is a non-uniform cantilever beam with an effective length 

I0 which extends from the tooth tip to the beginning of fillet area as shown in Figure II.5, 

Secondly, by dividing this section into a sequence of segments and using elementary strength of 

materials theory, both deflection and compliance of this tooth portion can be calculated. The 

formulas for the above-mentioned procedure are depicted in the following sections. More 

detailed illustrations and derivations were presented in the previous works [13] and [14]. 

12 
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Figure II.5   Geometry and deflection of an involute portion 
of a gear tooth 
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II.3.1 Bending Deflection 

(A) Displacement due to Wj cos ßj 

Wi cos ß; ,      >      Wi cos ß; , v 

(B) Displacement due to net moments Mj ij 

Wj ( U cos ßj - Yj sin ßj ) 

+ 
Wj ( Lij cos ßj - Y sin ßj ) 

\ Ti Lij ) 
Ec Ii 

where 

Ti: thickness of segment i 

Ee: "effective Young's module of elasticity" 

Ly: the distance from j to i 

Wj: the transmitted load 

Ii: moment of inertia of segment i 

Definition of other variables can be found from Figure Ü.5. 

According to Cornell [5], the value of Ee depends on the tooth width: 

For width tooth: 

F/Y>5 : Ee = E/(l-v2) 

For narrow tooth: 

14 

(IL14) 



F/Y<5 : Ee = E 

where Y : the tooth thickness at pitch point 

F : tooth face width 

n: Poisson's ratio 

II.3.2 Shear deformation 

The shear deformation is caused by the transverse component of the applied load. 

=   1.2 Wj Ti cos ßj   =  2.4(1 +v)Wj T cos ßj ^ ^ 

( qs h G Ai Ee Ai 

where 

G: shear modulus of elasticity 

Ai: cross section area of segment i 

IL3.3 Axial Compression 

This axial compression due to the component Wj sin ßj is 

Wj sin Pj Ti au6) 

V 1c k £ Ai 

The total displacement at the load position j, in the direction of load, due to deformation of 

segment i can be expressed as: 

(q, \ = (qw 
+ qM 

+ is \ cos ßj + (qc \ ™ ßj        d1-17) 

For a wide tooth plane strain theory is used, 
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( * )s = Wj { 
cos2 Pj If   +  Tf_Lij  + Ti Li 

3 I; Ii 

cos ßj sin ßj T? Yj  + Ti Yj Lj 

2 Ii L 

+ cos2 ßj 

+ 

2.4(1 + v)Ti 

Ai 

sin2 ßj [ T^ 

Ai 

(IL18) 

For a narrow tooth plane stress theory gives 

( Qi ), = Wj 
cos2 ßj Ti 

^  + Ti Lij + q | - tan ^ 
Ti Yj 

I     2 
+ Ti Lij 

Ii 

2.4 (1 + v) + tan2 ßj , 
+  -  } 

Ai 

ai-i9) 

II.3.4 Flexibility of the Fillet and Foundation 

The fillet and foundation deflections depend on the fillet geometry as well as the load position 

and direction. Both the fillet length and angle will affect the deflection. According to the study in 

Ref. 5, the fillet angle gf should be taken as 75 degrees and 55 degrees for low contact ratio gears 

16 



(LCRG) and high contact ratio gears (HCRG), respectively. As shown in Figure II.6, the 

deflections caused by flexibility of fillet and foundation are : 

For a plane strain case, wide tooth, 

. cos2 ßj 
(qft )„ = Wj { -^ 

^^ + (Tfl,)2  + (Tib), (Lft>)ij2.4(l+v)(Tfb) 

(fo x (A» X 

cos ßj sin ßj 2 
Yj 

+ ( Tfb \ Yj (u ). 
(fe)i 

+ sin2 ßj ( Tfb X 

(AfbX 

(11.20) 

(a = ^(-v2)<^F lid 
hf 

-|2 

+ 2 
1 - v - 2y2 

1 - v2 
M 
hf 

+1.534 1 + 
tan2ßj 2R A 

2.4 ( 1 + v ) 

(11.21) 

For a plane stress case, narrow tooth, 

17 



( q*b) = Wj { 
cos2 ßj ( Tfb \ 

(T»t + (Tft \ (u )a + (u); 

(i»); 

tan ßj 
( Tfb X Yj" 

+ Yj ( U 1 

(Ifb)i 

2.4 (1 + v) + tan2 ßj 

(AibX ]> 

(11.22) 

(<.ft)-^^(i + v) 
EeF 

16.67 
% 

(k >; 
hf 

+ 2(1 + v) 'OÜL 
hf 

+1.534 1 + 
tan2 ßj 

2.4 ( 1 + v ) 

(11.23) 

where 

qfb: deflection at and in the direction of load due to beam compliance of fillet, 

qfe: deflection due to foundation effects. 

Based on the superposition principle, the total deflection at and in the direction of load due to 

the flexibility of the fillet and foundation can be calculated by adding the above individual 

deflections, q& and qfe. That is, 

(qF \ = (qft \ + (qfe \ (11.24) 

18 
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Figure II.6  Flexibility of fillet and foundation 

19 



II.3.5 Local Contact Deflection 

The local deflection is caused by line-contact and compression deformations. According to 

Palmgren's study [15], a semi-empirical formula (equation 11.25) was developed for contact 

compliance of cylinders in rolling bearings. The local contact deflection of meshing teeth can be 

computed using the formula without significant error. Since the contact conditions for a pair of 

meshing gears are similar to that for a rolling bearing. 

( % \ =  Eo, ^I5
wo, (11-25) 

En  = -P^ (IL26) 
Ei + E2 

where Ei, E2 are Young's modulus of elasticity of gears. 

II.3.6 Tooth Stiffness 

If meshing portion of the tooth is divided into n segments, then, for each segment, the total 

deflection (qT)j can be computed as: 

( IT )j = Z  (<iw )s + (qM \ + (qL \ 
i=l 

(11.27) 

Furthermore, by multiplying the reciprocal of (qT)j with the shared tooth load Wj at j position, the 

equivalent tooth meshing stiffness for each segment can be expressed as the ratio of transmitted 

load to the total deflection. Since there are n segments involved, the total stiffness can be summed 

to determine the average tooth meshing stiffness (KG)avg from the following equations: 

20 



( KG ),  = 3^ (IL28) 
UT)J 

(KaU-^tC&X (n-29) 
'-•       n - 

where n is the meshing position number. 

Because the mass of a rotating gear body is theoretically concentrated at the radius of gyration, 

the deflection reference used in this study is assumed to be at this radius. The theoretical deflection 

and stiffiiess of the gear teeth will be affected by changing the mass moment of inertia and the 

geometry of the gear body. 

II.4 Gear Tooth in Action 

Figure H.7 shows a pair of gears with a contact ratio 1.40. A driving pinion tooth is just 

coming into contact at point E on the right and the preceding tooth on the left is in contact at point 

G. It should be noted that the contact starts at E and ends at H, where the outside diameter of the 

gear or the pinion intersect the line of action. When the gears rotate, the contact point of the tooth 

pair TG2 moves from point E to point F. Likewise, tooth pair TGi moves from point G to point H, 

respectively. Thus, two pairs of teeth carry the load during this period. When the contact point of 

tooth pair TG] passes point H, this tooth pair loses contact, leaving only one pair of teeth TG2 to 

carry the load. As the gears continue turning, the tooth pair TG3 starts contact at point E. Again, 

two pairs of teeth TG2 and TG3 carry the load until tooth pair TG2 leaves contact at point H. The 

position of the contact point of gear teeth along the line of action usually is expressed in term of 

roll angles of the driving gear. This expression is also consistent with our 

21 
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Figure n.7 Illustration of gear teeth meshing action 
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gear tooth deflection and stiffness calculations, since they are also expressed in roll angles of the 

driving gear. 

II.5 Transmission Error and Load Sharing 

The transmission error (TE) is defined as the departure of a meshed gear pair from a constant 

angular motion. TE may be defined as the instant deviation of the following gear from an ideal 

nominal value. TE is a result of many contributors and the main items are: 

(A) Combined deflection of meshing teeth 

(B) Tooth spacing error 

(C) Tooth profile error 

(D) Runout error 

The total transmission error for a gear pair is the sum of individual errors caused by above- 

mentioned sources and is written as: 

(*),- 

2 \ 

r=l J 

+ ftpE0.+[p](lsE" r=l 

(11.30) 
where 

k : the mating tooth pairs in sequence 

r : driving and driven gears 

P :ifk=lmenP = 0, otherwiseP = l 

dE : deflection of gear teeth at contact point 

pE : tooth profile error 

SE : tooth spacing error 

23 



Since the transmission error is the same for each tooth pair sharing the total transmitting load 

(W), it can be expressed as: 

( E\ ).  =  ( E| ).  = - (II-31) 

(CR)+1 

W=    J]WJ (II-32) 
n=l 

where (CR) is the integer part of the contact ratio. 

The magnitude of the load shared by each individual tooth pair can be calculated by solving a 

set of simultaneous equations (11.30,11.31, and H32). It should be noted that the meshing analysis 

equations are only valid under the assumption that there are n tooth pairs simultaneously in contact 

during mesh. If any of the tooth pairs lose contact, the terms corresponding to the tooth pairs that 

lose contact are eliminated. Then, the remaining equations are solved for the load and static 

transmission error of the tooth pairs that are still in contact. 

II.6 Torque Due to Friction in the Mesh Gears 

There is no general agreement for the friction coefficient. Some semi-empirical formulas have 

been developed based on different assumptions. Two of these formulas, Buckingham's [25], and 

Anderson and Loewenthal's formulas [26], were used in this study to determine the friction torques 

which will be incorporated into the equations of motion for dynamic analysis in a later chapter. 

Buckingham's formula: 

0.05 
gO.125 V. 

+ 0.002 JVs (11.33) 

4f 
fa  = — (II-34) 
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fr    = 
2f (11.35) 

where 

f : average coefficient of friction 

fa: average coefficient of friction of approach 

fr: average coefficient of friction of recess 

Vs: sliding velocity, ft/min 

Anderson and Loewenthal's formula: 

0.0127 log 
45.4 W 

F Uo Vs vl 
(11.36) 

VR  = 0.2094 n RP1 sin <j) 
(mg-l)l 

2R] .PI     ; 
(11.37) 

where 

f : average coefficient of friction 

W : actual applied load, lb 

F : tooth face width, in 

Vs: sliding velocity, in/sec 

VR : rolling velocity, or sum velocity, in/sec 

Uo: lubricant absolute viscosity, lbf-sec/in 

S : absolute distance, in, from pitch point to contact point along the line of action 

n : rotating speed, rpm 

nig: gear ratio 

25 



Based on these two formulas, the friction coefficient can be estimated. By taking into account 

the shared tooth load, the frictional torque Tf on each individual gear shaft can be found. This 

torque varies along the path of contact and changes direction at the pitch point. 

II.7 Flexible Shaft and Rolling Element Bearing 

Shafts and bearings are major components of the gear system. The most elementary rolling 

element bearing-shaft assembly is shown in Figure II. 8. Figure II. 9 shows a similar assembly with 

a overhung load. The concentrated load P is transmitted between gears along the contact-line 

direction. Figure II. 10 shows the free body diagrams of the force acting on two mating gears. The 

system is statically determinate, thus, the force FPG exerted on the driven gear causes a reaction 

force P as well as a torque T. The force P produces a shaft deflection and the torque T keeps the 

gear rotating. To obtain shaft deflection, a shaft can be considered as either a simply supported 

beam or a cantilever beam model, it depends on gear mounting position. From mechanics-of- 

materials, the shaft deflection can be calculated as: 

q       =    111   /     2    +       2    +      2   j 
4G        6EI1 V ' 

for a gear mounted between two bearings. 

<" = -f£<1 + >) 
for a gear mounted outside two bearings. 

(11.38) 

(11.39) 
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Figure n.8  A simple two-bearing-shaft system 
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Figure 11.9  A simple two-bearing-shaft system, overhung load 
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Figure HIO Free-body diagrams of the forces acting upon two gears 

in a simple gear train 
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Usually, when a rotor system is analyzed for deflections, bearings are assumed to be rigid, In 

fact the bearings deflect when subjected to a load, which adds to the shaft deflection. For a rolling 

bearing in service, the rolling element presses against its race-way either at a point or along a line, 

depending on the type of bearing. Under an external force, the rolling element deforms and the 

associated contact area is dependent upon the load magnitude as well as the curvature of the rolling 

element. On the basis of Hertz's "Contact of Elastic Solids" theory, Garguilo [16] derived a series 

of formulas to calculate deflection for different types of bearings. These formulas are expressed as 

follows: 

For a deep-groove or angular-contact radial ball bearing: 

r6   31 Ü 
'D Z2 cos5 a 

8r  = 46.2 x IQ"6 \l       ,ri   . (11.40) 

For a Self-aligning ball bearing: 

8r  = 74.0 x It)"6 ll       f1   5 (II-41) 
V D Z2 cos a 

For a spherical roller bearing: 

8r  =14.5xlO-6J  2    f (11.42) 
VL   Z   cos  a 

For a straight roller or tapered roller bearing: 

5r  =3-71Xl0'6Lo, jf    1Ja <«-43> 
L      Z      COS     Ct 
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where 

4 bearing deflection, in 

D : rolling element diameter, in 

Z : number of rolling elements 

a Contact angle, rad 

L : roller effect length 

Fr: radial external force, lb 

When a gear pair is in operation, shaft and bearing deflections cause the center of gear rotation 

to shift along the direction of the line of action (Figure II. 11) from its original location. The shift 

increases the center distance and pressure angle of the meshing gears, which in turn reduces the 

contact ratio. Since shaft and bearing deflections are usually small, their influence, is often 

neglected. 

To evaluate system dynamics, the shaft and connected masses should be taken into 

consideration. These parameters, polar mass moment of inertia, stiffness of shaft, and stiffness of 

connected masses, are incorporated into the equations of motion in the dynamic analysis. As 

suggested in [17], the polar mass moment of inertia J and the torsional stiffness K can be 

calculated by: 

j = 2^ ( D4 . D* ) (II-44) 

K = IxG=^(DÄ-D?) fll.45) 
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where 

r : mass density, lb/in3 

D0 : outside diameter of shaft, in 

D;: inside diameter of shaft, in 

1 : length of shaft, in 

I : torsional constant, in4 

G : shear modules, lb/in2 
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CHAPTER III 

SYSTEM DYNAMIC ANALYSIS 

ULI Equations of Motion 

To precisely model the dynamic loading is a difficult task, even in idealized geometry 

conditions. The vibration of a gear tooth is affected by the tooth force which fluctuates in 

amplitude, direction, and position during the meshing process. Load fluctuations are influenced by 

the damping effect of the lubricant and the operating speed. In general, a gear train is very 

complicated and composed of various sub-systems, such as motor, bearing, shaft,..., etc. and each 

sub-system is a complete dynamic system. The gear transmission is generally simplified to a 

relatively small number of lumped masses connected elastically. Under this modeling, a simple 

spur gear system shown in Figure IH. 1 can be represented by a mathematical model shown in 

Figure IH.2. This model has four degrees of freedom and consists of gears, input device, output 

device, and two flexible shafts. The dynamic behavior of meshing gears could be considered as a 

periodic forced motion. To develop the governing equations, some assumptions are applied in 

addition to those made at the beginning of chapter II. These assumptions are: 

(A) Damping (due to material in gears and shafting and from lubrication) is expressed as a 

constant damping coefficient. 

(B) The differential equations of motion are expressed along the theoretical line of action. 

(C) The reference point for tooth deflection is assumed to be located along the tooth centerline at 

the radius of gyration of the gear body. 
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Using basic gear geometry and elementary vibration principles, the governing equations 

can be expressed as follows: 

jMeM+csl(eM-e,) + Kd(eM-e1) = T] M (m.i) 

Ji Gi  + Csi (9i-9M)+ cG (t) Rbi (Rbi 9i - Rb2 e2) 

+ Ksi (Gi - GM )+ KG (0[Rb, ( Rbi  6i - Rb2  62 )] =  TF, (t) 

(m.2) 

h e2 + Cs2 (62-61) + CG (0 Rb2 (Rb2   62    -   Rbi   6i) 

+ Ks2 ( 62  - Qi )+  KG (0 [ Rb2 ( Rb2 62  -  Rbi 9i ) ] = TF2 (t) 
(m.3) 

JL6L   + Cs2 (6L-62) + Ks2 (GL - 62 ) =   -TL (in.4) 

where 

JM, JI, h, h '• mass moments of inertia for motor, gear I, gear II, and load, respectively 

KSi, KS2, Ko(t): stiffnesses of shaft I, shaft II, and gear teeth, respectively 

CSi, CS2, CG(t): damping coefficients of shaft I, shaft II, and gears 

TF1(t), TF2(t) : friction torque of driving gear and driven gear 

TM, TL : input and output torque 

The time varying friction torque of the gears and periodic variation of the mesh stiffness act 

as excitation terms to the equation of motion. The stiffness of gear teeth (represented by springs) 
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is determined by the method developed in Chapter II. The system dynamic characteristics can 

then be found by solving the above simultaneous differential equations. 

m.2 Numerical Solution Approach 

Due to nonlinearity in the equation of motion, it is necessary to apply a numerical approach to 

find the solution. Two steps are used in solving the equations. First, a static analysis is 

introduced to obtain the required parameters. Second, a dynamic analysis is incorporated to 

obtain the final result. 

The static analysis includes the following: the geometry of meshing gears is determined from 

basic gear dimensions, the center distance of meshing gears affected by shaft and bearing 

deflections is calculated by using equations mentioned in Chapter II, the transmission error, load 

sharing, and tooth stiffness obtained by those procedures referred in Chapter II. 

The dynamic analysis is conducted as follows. The fluctuating output torque, damping in 

gears, frictional torque, and time-varying mesh stiffness under constant input torque are taken 

into consideration. Initial values of angular displacement and angular velocity are needed in the 

analysis. Starting values are obtained through preloading the input shaft with the output shaft 

fixed. The preload torque is the static design torque carried by the system. 

The equations of motion are linearized by dividing the mesh period into many equal 

intervals. Those equations are solved by an iteration technique incorporating the nominal initial 

values. At each step Xn and Vn need to be compared respectively with the initial value Xo and 

V0 to confirm the iteration convergence. To determine whether the convergence is satisfied, the 

following criterions are used: 

| X„ -  Xo I  ^ 0.05 Xo       , 
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and 

I Vn -  Vo I  ^ 0.05 Vo     , 

The same steps are repeated by averaging the initial and calculated values of angular 

displacement X„, and angular velocity V„, as the new initial values of next period, respectively. 

Three situations may occur when gears are in mesh. Each one of these three situations (A, B, or 

C) will produce a specific dynamic condition. Assume gear 1 is the driving gear, 

Case (A) Rbl  9i - Rb2  92  > 0 

This is normal operation case. The dynamic tooth load on gear 1 is then: 

Wdi   =  KG (t)(Rbi  9i - Rb2  92 ) + Co (t)[ RbI  6,   - Rb2 92 J 

(ni.5) 

which is the same as the dynamic tooth load on gear 2, 

Wd2 = Wdi C™-6) 

Case(B) Rbl  6i - Rb2  92   < 0  and   | Kbiei - Rb292| < Bh 

In this case, the gears will separate and lose contact, therefore, 

Wd  = 0 (m.7) 
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IS 

Case(C)Rbl  6i - Rb2 02  < 0  and  | Rbl9,-Rb292| > Bh 

In this case, gear 2 will collide with gear 1 on the backside. The dynamic tooth load on gear 1 

Wdi  = KG (t)[( Rb, Gi - Rb2 82 ) - B„ ] + Co (t)[ Rbi Oi - Rb2 G2 

(in.8) 
and 

Wd2   =  Wd, (m.9) 

The term ( Rbl   9]  -  Rb2   92 ) is the relative dynamic displacement between gear 1 and 

gear 2, and Bh is the backlash of gears. 

In general, damping is present in an oscillatory system. The mathematical description of 

damping effect is so complicated that it needs to be simplified in the vibration analysis. A 

simplified damping model is introduced in this study to determine the effective damping factor 

Csl and Cs2, 

Cs,   = 2 £S1    \f   1 
KS1   1 ^ (HI.10) 

JD Jl 

cS2 = 2 £S2  |   i 
Ks2 t , (m.ii) 

V JL        h 
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The £, represents the damping ratio of shafts ( expressed as a fraction of critical 

damping). Based on experimental results [18], the damping in the shafts due to material damping 

was found to be between 0.005 and 0.007. In this study, it is taken as 0.005. 

For damping between the gear teeth, similar formulas are used: 

CGI   = 2 % 
KGI 

Kbl R 2      "\ 
b2 

(111.12) 

h   J 

CG2 n KG2 

R
2

M + R 2      A 
b2 

(IIL13) 

[19] and [20] indicated that the value of the damping ratio £ for these formulas is between 0.03 to 

0.17. An average value of 0.10 is used in our study. The flow chart for the above numerical 

approach is shown in Figure IH.3. 

III.2.1 Undamped Natural Frequency 

The undamped equations of motion for the gear pair in mesh can be obtained by neglecting the 

damping and excitation terms from Equations m. 1 through m.4. The undamped equations of 

motion were solved by a Jacobian iteration technique to find the natural frequencies of the system. 

In equation HI. 14 the average gear mesh stiffness (KG)^ is introduced to facilitate the solution 

for eigenvalues. (KGW is determined by summing up the discrete stiffness values over one tooth 

mesh cycle and dividing by the number of mesh positions in the cycle. 
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'Jvr       0       0        0 'M 

0     J,     0      0 

0      0    J,     0 

0      0     0    JT 

?M 
LS1 -k si 

-ksl    ksl + (kG)8VgRbi     -(kG)avgRHR b2 

0      -(kG)avgRblRb2    kS2+(kG)avgR^2   - 

-k S2 

0 6M 

0 6I 

"^82 e2 

kS2 _ .ÖL. 

= [0] 

(111.14) 

111.2.2 Fast Fourier Transform of Transmission Error 

According to Mark [21], gear noise and gear dynamic load are often characterized by strong 

components at the tooth mesh frequency. Kubo [22] stated that the magnitude of gear transmission 

error at the harmonics of the tooth mesh frequency corresponds somewhat proportionately to the 

magnitude of maximum dynamic tooth fillet stress. Both of these phenomena are caused by 

vibrational excitations due to time-varying stiffnesses of meshing gears. Therefore, the dynamic 

response also corresponds proportionately to tooth mesh frequency. In this study, frequency 

analysis of static transmission error is performed by taking the fast Fourier transform (FFT) of its 

time wave. In general, the amplitudes of higher harmonics are usually small, thus their contribution 

to the excitation be neglected. Therefore, only the first twelve harmonic values are calculated. A 

typical plot of the static transmission error spectrum is shown in Figure m.4. 

111.2.3 Speed Survey of Dynamic Stress and Load Factor 

Cornell [23] modified a formula developed by Heywood [24] for the calculation of root fillet 

bending stress of a gear tooth. This formula is readily adapted to the geometry of involute gear 

teeth and can be expressed as 
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o\ - 
Wj cos ßj 

1 + 0.26 

6 1s 
hL tan ßj 

+ 

hs 

V 2 r  J 

' 0.72 ^S 

v hs Is 

f        h, "\ tan.ß= 
1 - Üt v tan ßj J 

hs 

(m.i5) 

where 

v : approximately 1/4 according to Heywood [24] 

ßj: the load angle, degree 

F : face width of gear tooth, in 

r : fillet radius, in 

and the rest of nomenclature is defined in Figure III.5. Note that ys, which defines the position of 

maximum fillet stress, is 30 degrees for LCRG, and 20 degrees for HCRG, as suggested by 

Conell [23]. 

The main source of gear vibration is the time-varying tooth stiffness due to alternating 

tooth load, and changing tooth contact position. To investigate the dynamic performance of a 

gear system under realistic operating conditions, the rotating speeds were varied over a wide 

range. Figure III.6 shows the variation of gear load and tooth root stress as a function of 

operating speed for a typical high-contact-ratio gear pair. The load and stress are shown in 

nondimensional form as the dynamic load factor, which is the ratio of maximum dynamic load to 

total applied load, and the dynamic stress factor, which is the ratio of maximum dynamic stress 
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Figure TE.5 Nomenclature for modified Heywood formula 
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Figure IH6 Speed survey of dynamic load factor and dynamic stress factor 
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to maximum static stress. The total applied load is the input torque divided by the base radius of 

the driving gear. It is found that the major peak for both dynamic stress and dynamic load 

factors occurs near 9300 rpm, which is the system natural frequency. 

The analysis described above has been incorporated into the NASA gear dynamics program 

DANST. The program calculates the properties of system components and substitutes them into 

bending stresses and other parameters.   DANST was used for the parameter study which 

follows. 
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CHAPTER IV 

PARAMETER STUDY 

IV.l Effect of Damping 

The Damping ratio %  governing the dynamic load variation depends on the viscous friction and 

the material properties of the meshing gears. It is usually an unknown quantity. To explore the 

effect of damping, the analysis was performed using a sequence of damping ratio values between 

0.07 and 0.14. The analysis covered a range of rotating speeds at constant design load 2000 lb/in 

for both high-contact-ratio gears (HCRG) and low-contact-ratio gears (LCRG). The range of 

speed studied was 2000 to 12,000 rpm. The number of teeth 32, the diametral pitch 8, and the face 

width 1 inch were chosen for the basic dimensions of these gears. The results are shown in Figures 

IV. 1 and rV.2 and Figures IV.3 and IV.4, for dynamic load factor and dynamic stress factor, 

respectively. As illustrated in these figures, damping has a major influence on both dynamic load 

and stress factors when the operating speed is close to the critical speed, or one-half or one-third of 

critical speed. Damping has little influence at other speeds. A large damping coefficient will 

reduce the dynamic motion at peak resonance speeds. This can be observed in Figures IV.l 

through IV.4 for both low and high contact ratio gears. 

The dynamic factor plots show that dynamic load factors of LCRG are much more speed 

sensitive than those of HCRG - especially if the damping is low. Also, the dynamic stress factors 

of HCRG are generally much greater than the dynamic load factors. These phenomena are 

influenced by the magnitude of the maximum dynamic load and its position. A small dynamic load 

near the tooth tip may produce a higher dynamic stress than that produced by a larger dynamic 
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load near the tooth root. Furthermore, a HCRG has a long, thin tooth which can produce a high 

stress at the fillet region. 

Figures rv.5(a) and rV.5(b), which are static and dynamic load distribution plots for LCRG 

and HCRG, respectively, demonstrate the effect of different damping coefficients at resonance 

speed. The points of the curves where the dynamic load drops to zero indicate where the teeth lose 

contact during mesh, and the second peak of dynamic load occurs at the teeth re-engagement 

position. Figure IV. 6(a) shows that the teeth separate when LCRG operate at resonance speed for 

all damping cases. There is no load exerted on the tooth and the value of tooth deflection is zero 

during the separation period. The average tooth stiffness for the entire tooth engagement period in 

this case is smaller than it would be if the teeth did not separate. This effect decreases the 

calculated value of the resonance speed. 

Figure rV.6 shows the dynamic load and stress factors versus gear mesh damping coefficient for 

both HCRG and LCRG at resonance and sub-resonance speeds. For HCRG, the value of dynamic 

factors decreases smoothly as the gear mesh damping coefficient increases. This is also true for 

LCRG at sub-resonance speeds, but not for LCRG at resonance speed. For low contact ratio 

gears, resonance speed represents an unstable operating condition.   In Fig TV. 6 (a), there is a large 

change in the dynamic load factor at the damping coefficient value of 0.113. To understand this 

phenomenon, it is useful to look at the tooth static and dynamic load distribution plot (Figure TV. 6) 

again. It can be observed that the teeth ar e out of contact longer for lower values of the damping 

coefficient. Since the gear meshing stiffness becomes zero when teeth lose contact, the average 

meshing stiffness becomes small and the resonance location shifts to a lower rotating speed. Since 

the damping coefficient cannot be directly controlled by a gear designer, we can reduce the risk of 

gear failure by avoiding the resonance region. 
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Figure IV. 6(a) Dynamic load factors versus gear mesh damping coefficient 
for different contact ratio gears 
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Figure IV. 6(b) Dynamic stress factors versus gear mesh damping coefficient 
for different contact ratio gears 

56 



In most of the curves in Figure IV.6(a), tooth re-engagement occurs at around the tooth pitch point 

(roll angle = 20.854 degree) where the friction force reverses its direction. This causes the 

frictional torque around the tooth pitch point to change very sharply, producing unstable dynamic 

effects. For t, = 0.113 and 0.114, the re-engagement points are located on either side of the point 

A (roll angle = 18.984) which is the transition point of double and single teeth contact area. In Fig 

IV.6(b) for HCRG, all the peak dynamic loads occur at the same position and there is no complete 

tooth separation for any damping case. The value of the maximum dynamic load is less influenced 

by H,   than with LCRG. 

IV.2 Effect of Flexible Shaft and Bearing 

Many gear dynamic models are based on the assumptions of rigid shafts and rigid rolling 

bearings. Rotor dynamics studies examine effects of the flexibility of the shaft and the mass 

unbalance of a gear body. The dynamic behavior of the gear system is affected not only by the 

tooth mesh stiffness but also by the elasticity of shafts and the rolling element bearings. The 

deflection of these supporting elements result in the deviation of the center of rotation from its 

original location. Hence, in order to obtain a more accurate prediction of the dynamic behavior of 

the overall gear system, the flexibility effects of shafts and bearings should be considered. These 

effects can be added to assembly misalignment. For the purpose of static analysis, it is sufficient 

to consider only relative radial motion of the center of gear rotation. The axial motion due to the 

shaft bending moment is negligible. A change of the center distance of a pair of gears will affect 

the pressure angle and the contact ratio. A detailed discussion of contact ratio effects will be 

illustrated in a later section. 

Two typical rolling bearing-shaft systems are considered in this study. One has a gear 

mounted on a shaft between two bearings as in a simply supported beam, and the other has a gear 
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mounted on a shaft outside two supported bearings as in a cantilever beam. It is assumed that the 

materials of the gears and the shafts are homogeneous steel and there are no geometric errors in 

any of the components, therefore no eccentricity is considered. The flexural displacement of a 

rolling bearing due to the transmitted load can be divided into axial and radial direction 

components. Only the displacement in the radial direction affects the gear contact ratio. The 

outside diameter 1.5 inches and modulus of elasticity 30,000,000 psi were chosen for both shafts. 

The computed results of the deflection due to a normal gear tooth load between 500 lbs 

and 2000 lbs are shown in Figure IV.7, and Figure rV.8(a) and (b) for simply supported beam and 

cantilever beam, respectively. Four types of the bearings were considered, type-1: deep-groove 

bearing, type-2: self-aligning bearing, type-3: spherical roller bearing, and type-4: tapered roller 

bearing. All of these have the same number (21) of rolling elements and 0.25 inch radius elements. 

The effective length 0.25 inch is chosen for the roller element and zero contact angle is selected for 

all the bearings. Since rolling elements in a ball bearing make point contact with the race way, the 

Hertzian contact deformation of a ball bearing is higher than in a roller bearing which has line 

contact. Thus, the deformation of the ball bearing is greater than that of the roller bearing. This 

can be seen in Figures rv.7 and IV.8, the deformations of both type-1 and type-2 bearings are 

larger than the deformations of type-3 and type-4, and they have a higher slope. The type-2, self- 

aligning bearing, is designed for moderate thrust force and can only resist a light radial load, thus 

has the maximum deformation. In the two cases shown, the shafts are relatively long, hence, the 

shaft deflections are much higher than the bearing deformations, especially with heavy loads. The 

change of a gear pair's center distance is governed by the shaft deflection. But, in the cantilever 

shaft case shown in Figure rV.8(b), the load exerted on bearing-2 is equal to the transmitted load 

plus the magnitude of the reacting load on bearing-1. This load produces the deformation of type-1 

and type-2 bearings at the bearing-2 position as great as 
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Figure IV.7  Deflections of shaft and bearings under various loads for a simple two-bear-shaft 
system measured at gear position 
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Figure IV.8(a) Deflections of shaft and bearings (at bearing-1) under van 
loads for a simple two-bear-shaft system, overhung load 
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Figure IV.8(b) Deflections of shaft and bearings (at bearing-2) under various 
loads for a simple two-bear-shaft system, overhung load 
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the shaft deflection or even higher. In order to prevent failure a roller bearing or duplex ball 

bearings may be needed in the bearing-2 position. 

Figures IV.9 and IV. 10 show the resulting change in contact ratio due to combined 

deflection at various gear mounting positions. Li the simply supported shaft case, Figure IV.9, the 

maximum deflection occurs when both gears are mounted at the center of the shafts. This causes 

the minimum contact ratio. In the cantilever shaft case, Figure IV. 10, increasing the overhang of 

the gears reduces the contact ratio. Gear shaft deflection, especially for overhung gears, also 

creates misalignment which can lead to edge contact of the gear teeth. 

The contact ratio is influenced by the center distance: increasing the center distance 

reduces the contact ratio. This is illustrated in Fig IV. 11 which compares the effect for gear sets of 

two different sizes and both standard addendum.   For the two larger gear sets ( diametral pitch 8 

and 32 teeth ) the curves for contact ratio vs. increase in center distance have the same slope.  For 

the smaller gear sets ( diametral pitch 12 and 32 teeth ) the slopes of the curves are equal to each 

other but steeper than the curves for the larger 8 pitch gears.   This demonstrates (1) the sensitivity 

of contact ratio to center distance is not affected by the tooth addendum and (2) smaller gears with 

smaller teeth are more sensitive to center distance variation. 

IV.3 Effect of Contact Ratio 

The contact ratio is defined as average number of tooth pair(s) in contact. It may also be 

defined as the ratio of the length of contact for one tooth pair to the base pitch. The contact ratio is 

a key parameter for dynamic behavior of gears. 

The contact length is measured on the line of action between the initial contact point and 

the end contact point. In general, the higher the contact ratio, the longer the overlap where more 

than one pair of teeth are in contact, and the more smoothly the gears will run. It is possible to 

increase the contact ratio to greater than two by carefully manipulating the gear design 
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parameters. Figures IV. 12(a) and (b) illustrate how an increase in the normalized tooth addendum 

A from 1.0 to 1.4 raises the contact ratio from 1.26 to 2.46. 

Although it is beneficial to distribute the load among more pairs of teeth, the load capacity 

of a gear set may suffer due to longer moment arm as a result of going to a higher contact ratio. 

Therefore, gear design represents a compromise between various design requirements. 

Furthermore, in order to operate HCRG effectively, the gears have to be manufactured to a higher 

degree of precision so that the load can be properly shared by the three or more pairs of teeth in 

contact. 

High contact ratio gears can be designed in several ways: (1) by selecting a greater value 

of diametral pitch (smaller teeth), (2) by increasing the length of tooth addendum, and (3) by 

choosing a smaller pressure angle. Those parameters can be changed individually or in 

combination to achieve the desired contact ratio. Raising diametral pitch increases the number of 

teeth and diminishes the tooth thickness, which will reduce the tooth strength. Augmenting the 

length of the addendum causes the tooth to become longer which increases the bending stress at the 

fillet region. A lower pressure angle increases the tangential force component acting on the tooth. 

This makes a higher bending moment. Moreover, it raises the chances of interference, and reduces 

the tooth thickness at the root. Generally speaking, high-contact-ratio gears tend to have weaker 

teeth. They also have a greater tooth sliding velocity which may produce higher surface 

temperatures and greater tendency for surface-distress-related failures. Increasing the tooth 

addendum is usually the preferred method to obtain high-contact-ratio gears because this can be 

done by adjusting the cutting depth during the manufacturing process. 

This study investigates the effect of varying the contact ratio for a typical set of spur 

gears. Design parameters for the gears are shown in Table IV. 1. The contact ratio is varied over 

the range 1.26 to 2.46 by increasing the normalized tooth addendum from 0.7 to 1.54. The results 
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Figure IV. 12(a) Tooth contact in low-contact-ratio gear 

Figure IV. 12(b) Tooth contact in high-contact-ratio gear 
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are shown in the form of the dynamic load factor plotted as a function of rotating speed in Figure 

IV. 13 for LCRG and Figure IV. 14 for HCRG. 

In Figure IV. 13, for LCRG, the dynamic load factor generally decreases as the gear 

contact ratio increases. This phenomenon is most prominent at the main resonant speed, near 9000 

rpm, and at one-half of this resonant speed. The gears with the highest contact ratio (CR = 1.868) 

have lower dynamic load at all speeds. We believe that this effect is due to the very narrow band 

of single-tooth contact being passed so quickly during gear rotation that the system could not 

respond until after the excitation has passed. The high speed behavior of LCRG with contact ratio 

close to 2.0 is similar to that of nigh-contact-ratio gears shown in the following figures. 

In Figure IV. 14, for HCRG, there is much less dynamic action; none of the dynamic load 

factors of HCRG exceed 0.9 even at resonant speed. Contrary to LCRG, the higher the contact 

ratio of HCRG the higher the dynamic factor in the resonance zone. The gears with the lowest 

contact ratio (CR = 2.226) have the highest dynamic load at lower speeds, but the trend reverses at 

the resonant speed where the gears with the highest contact ratio experienced the highest load. This 

phenomenon may be due to excitation from the transition between double- and triple-tooth contact. 

For gears with contact ratio equal to 2.226 the triple-tooth-contact region is shorter than that of 

the other two cases with high contact ratios. The excitation due to the change in number of teeth in 

contact( which changes the meshing stiffness ) acts like a short-duration impulse, which is more 

effective at lower speeds than at higher speeds. 

Figure IV. 15 compares the dynamics of "transition" gears from LCRG to HCRG (CR = 

1.952, 2.000, and 2.145). The dynamic curves for CR= 1.952 shows a trend similar to that for 

CR = 1.868 in Figure IV.13. For gears with a contact ratio of exactly 2.0, there is almost no 

variation of the meshing stiffness during tooth contact. As a result the dynamic response is very 
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Table IV. 1   Sample Gear Parameters 

Pressure Angle (degree) 20.0 

Diametral Pitch (DP) 8 

Number of Teeth 32 

Addendum, (normalized by 1/DP in.) 0.7 ~ 1.45 

Backlash (in.) 0.001 

Pitch Diameter (in.) 4.0 

Outside Diameter (in.) 4.175-4.385 

Root Diameter (in.) 3.775-3.565 

Face Width (in.) 1.0 

Design Torque (Ib-in.) 3760 

Static Tooth Load (lb/in.) 2000 

Tooth profile involute 

Damping ratio 0.10 
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gentle, even at resonant speeds. At CR = 2.145 excitation due to the meshing stiffness variation 

between double- and triple-tooth contact produced some dynamic effect at lower speeds (below 

5000 rpm). As speed increased beyond 5000 rpm, the effect of stiffness variation diminished, as 

shown in the figure. 

The effect of varying contact ratio (CR) on the dynamic load factor and dynamic stress 

factor at the critical speed (on) and certain submultiples of this speed are shown in Figures 

IV. 16 and IV. 17. 9300 rpm is the first critical speed for tooth mesh excitation, and 4650 rpm is 

one-half of this speed. The data in Figure IV.16 may be grouped into three zones: In zone 1, 

where contact ratio is less than 1.7, the dynamic load factor at critical speed is nearly constant at 

approximately 1.9. For the submultiples of the critical speed, the dynamic load factor oscillates 

around a level about 25 percent less than that of the critical speed. In zone 2, a transition zone 

where the contact ratio changes from approximately 1.70 to 2.0, the dynamic load factor drops 

rapidly as the contact ratio increases, reaching a minimum of 0.64 at CR = 2.0. The dynamic 

load for the critical speed falls off first, and then the smaller submultiples fell off at a higher 

contact ratio value. Finally, in zone 3, where the contact ratio is greater than 2.0, the dynamic 

load factor oscillates between 0.64 and approximately 0.8. As a general trend, dynamic loads for 

high contact ratio gears are smaller than for LCRG. 

The dynamic tooth bending stress depends on the dynamic load and also the location on 

the tooth where this load occurs. A high load acting near the tooth tip causes higher bending 

stress than a similar load applied lower on the tooth. Figure IV. 17 shows the variation of the 

dynamic stress factor with contact ratio at the critical speed (co n) and submultiples of © n. As in 

the previous discussion for dynamic load factor, in zone 1, (where the contact ratio is greater 

than 1.7), the dynamic stress factor at co n declines slightly from about 2.0 to 1.7 as the contact 
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ratio increases slightly with contact ratio. In zone 2 (transition from low to high contact ratio), 

the dynamic stress factor declines significantly to a minimum value of 0.65 at CR=2.0. In zone 

3, where the contact ratio is greater than 2.0, the dynamic stress oscillates between approxi- 

mately 1.03 and 1.35. At the critical speed, the dynamic stress is much higher for LCRG than for 

HCRG, however, at submultiples of the critical speed, the dynamic stress factors for HCRG and 

LCRG are nearly equal. At all speeds, the dynamic stress factor is lowest for gears with CR=2.0. 

Figures IV. 16 and IV. 17 show that increasing the contact ratio does not always reduce 

the dynamic load or dynamic stress. For gears that operate over a wide range of speeds a contact 

ratio close to 2.0 is the best choice. Although a high contact ratio gear (CR>2.0) may have a 

relatively low dynamic load factor, the dynamic stress may not be low because of the taller teeth. 

A three dimensional representation of the effect of the speed and contact ratio on the 

dynamic load and dynamic stress factors are shown in Figures IV. 18 and IV. 19, respectively. 

The dynamic load and dynamic stress show similar trends when the contact ratio is smaller than 

2.0. However, the dynamic stress factors are much higher than the dynamic load factors when 

the contact ratio is greater than 2.0. The corresponding contour diagrams in Figures IV. 18(b) 

and IV. 19(b) show that although the dynamic load is generally low throughout the entire HCRG 

region, the dynamic stress remains high. These contour diagrams are good tools for pinpointing 

the exact position of the dynamic peaks and valleys for a gear design. Gears with minimum 

dynamic load and stress will be located in the valleys of these diagrams. In Figures IV. 18 and 

IV. 19, dynamic load and dynamic stress factors are minimum near CR = 2.0. 

For some applications it may not be feasible to design a gear system with a contact ratio 

of 2.0.   Moreover, the contact ratio of a gear pair may be altered by shaft deflection. Figure 

IV. 18 and IV. 19 show the effects of such changes for the gear system analyzed in this report. An 

analysis code such as DANST can be used to generate similar data required for designing other 

gear systems. 
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CHAPTER V 

CONCLUSIONS 

The flexibility effects of shafts and bearings have been added to previous work [13, 14] 

to improve the simulation of gear dynamics. Parametric studies of gear dynamic behavior were 

performed using the computer program DANST. A wide range of the gear mesh damping 

coefficient values, from 0.07 to 0.14, were examined to study the influence of the damping on 

gear dynamics. The effect of contact ratio on gear dynamics was investigated. Contact ratios 

ranging from 1.20 to 2.40 can be obtained by varying the length of the tooth addendum for a 

sample pair of spur gears used for the analysis. Other parameters which also affect the value of 

contact ratio were held constant in this study. 

Based on the results from the analytical investigations, the following conclusions were 

obtained. 

(1) Generally speaking, dynamic tooth bending stress in high-contact-ratio gears is 

higher than that in low-contact-ratio gears. When the contact ratio approaches 2.0 significantly 

lower dynamic stresses were found throughout the speed range. 

(2) Damping has a major influence on dynamic response only when the operating speed 

is close to a resonant speed, and a much less influence when operating speed is near sub-multiple 

of the resonant speed. 

(3) The contact ratio of a gear pair is influenced by the operating center distance. In 

order to determine actual contact ratio of gears in operation, gear designers should take the 

deflections of shafts and bearings into design consideration. 
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(4) Dynamic effect is significantly higher for low-contact-ratio gears than for high- 

contact-ratio gears. There is a benefit of using high-contact-ratio gears for minimizing gear 

dynamic load. 

(5) In general, for low-contact-ratio-gears, increasing the contact ratio reduces dynamic 

load. The most significant effect occurs as the contact ratio approaches 2.0. Dynamic effects are 

minimized at contact ratios near two. For high-contact-ratio gears, the optimum contact ratio 

value depends on the operating speed. Increasing contact ratio does not always reduce dynamic 

load. 

(6) At very high speeds ( above the critical speed), the dynamic response of a gear 

system is much less influenced by the contact ratio or by small speed changes. 
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